### **CHAPTER 2**



# II II III NATHANIFI T WHFEI WRIGHT\*

m wey worus wauraceae: seed aspersals rugivory, tropics, masting, prehotogy, plant reproductions annual variation in trut production



## Introduction.



\* Present address: Department of Biology, Bowdoin College Brunswick, Maine 04011, USA



#### Suidy area

The study area covers 15 km<sup>2</sup> of lower montane wet and rain forcers (Holdeidos, 1967) is Manager antisverge, lies (Coste Pacer II), B. N. 84°48' Wey, N



## Especies, Lre

At least 22 bird-dispersed lauraceous tree species occur in the same or adjoining habitats at Montoward a Their suscession in the second of the second of the interval of the second o





wasps. In any month of the year, at least one lau-







Fig. 1a-v. Seasonal flowering and fruiting phenologics of 22 bird-dispersed tree species in the Lauraceae of Monteverde, Costa Rica in a manufacture of the species of the





Lauraceaeczuumjynis reproduction in ini

itored reproduction in Since June 1980 1-have mon

286 marked trees, representing 22 species. Individual trees of six of these species were observed during 1070 coursely. For the 16 component provide



Doculto

Interroquetion fluctuated annually (high 2 - fight













Individual trees within consider for its indifferent









other, yet they showed distinct cycles (Table 1).

|                                                                                                                 |        | ž   |
|-----------------------------------------------------------------------------------------------------------------|--------|-----|
| Previous reproductive efforts and variation                                                                     | in fri | uit |
| TO BE AND A CONTRACT OF THE OWNER |        | 2et |



There appear to be three general reproductive patterns within the Lauraceae: erratic moderate-level fruit production, periodic prolific fruit production.



| Tree species | Correlation | No. successive<br>plant-years | Correlation<br>coefficient:<br>fruiting vs. | No. successive plant-years |    |
|--------------|-------------|-------------------------------|---------------------------------------------|----------------------------|----|
|              | 22          | 21                            | 33                                          | 27                         | 6  |
|              | 44* *       | 42                            | 56                                          | 55                         | 12 |
|              | 07          | 24                            | in <u>100</u>                               | 31                         | 7  |
|              | .00         | 102                           |                                             | 135                        | 30 |
|              | .05         | 104                           |                                             | 135                        | 29 |
|              | 43          | 21                            |                                             | 2 <b>27</b> :              | 6  |
|              | .58* *      | 56                            |                                             | 733                        | 16 |
|              | 28          | 7                             |                                             | 24-3                       | 5  |
|              | 07          | 20                            |                                             | 27:1-                      | 6  |
|              | .13         | 39                            |                                             | 52                         | 12 |
|              | 42* *       | 110                           |                                             | 1421                       | 30 |
|              | 18          | 34                            |                                             | 49.                        | 12 |
|              | .41         | 12                            |                                             | 15-                        | 3  |
|              | .23*        | 85                            |                                             | 13=                        | 25 |
|              | 03          | 39                            |                                             | 561                        | 14 |

\* P<.01 P<.05

-- /



 Table 3. Three general patterns of fruit production within the Lauraceae at Monteverde. Mean cron size and variability in crop size refer

  $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$   $10^{-10}$ 

| Tree species                  | Fruit size (e) | Mean fruit crop<br>size | L'ariabilituiz area of accimistency. | Consistency of individuals |
|-------------------------------|----------------|-------------------------|--------------------------------------|----------------------------|
| Erratic moderate level fruite | rs             |                         |                                      |                            |
| Phoebe mexicana               |                |                         | moderate                             |                            |
| Ph. neurophylla               |                |                         | moderate                             |                            |
| Nectandra gentlei             |                |                         | high                                 |                            |
| *Persea sp. RP                |                |                         | moderate                             |                            |
| Ocotea sp. FL                 |                |                         | moderate                             |                            |
| **N. sp. NC                   |                |                         |                                      |                            |



|  | <ul> <li>A second design of the balance of the second se<br/>second second se<br/>second second s</li></ul> |                                                                                                                |
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the second s |

| . costaricensis | 3.9  | 2.0        | 0    | 0            |  |
|-----------------|------|------------|------|--------------|--|
| sp NC           | 0.5  | 3.3        | 0    | 2.0          |  |
|                 | 0    | 0.2        | 0    | 2.0          |  |
|                 | 0    | 0          | 0    | 0            |  |
|                 | 1.1  | 0          | 72.6 | Õ            |  |
|                 | 1.1  | n <b>f</b> | 0    | 0            |  |
|                 | 2.2  | 5 .8       | 0    | 2.0          |  |
|                 | 0    | ) (juži)   | 0    |              |  |
|                 | 01.7 | I.9(7      | 27.4 | 5:6 <b>X</b> |  |

Proceilas seems related to their dependence on lauraceous fruits (Snow 1973; see also Grome 1975).



Variance in reproductive success among trees

Several species in this study produced perplexingly few fruits over a six-year period. Ocotea sp. RP. a



their seed or seedling biology suggests unusually



#### Conclusion

It is commandlate to rate that we nuclean give me studies of that ked inside the provision reward to the provision of the pro

Acknowledgements





Alvim, P. de T. and R. Alvim. 1978. Relation of climate to

