The Condor 114(2):412 420 © 2012

1 . . NA HANIEL . HEEL IGH ^{1,3}, E AN . G AFF¹, and D. AN NO. I $^2_{\rm s}$ ¹Department of Biology, Bowdoin College, Brunswick, ME 04011 ²Department of Integrative Biology, University of Guelph, Guelph, Ontario NIG 2W1, Canada ff

.

L

416 y .

1	1989		2009 10	
	Δ_{c}	Wi	Δ_{c}	w _i
······································	33.275	0.00	36.935	0.00
• · · · · f. . . f. , . .	28.050	0.00	21.300	0.00
and a find of the find and	21.930	0.00	16.146	0.00
· · · · f. l. l.	7.831	0.00	0.18	0.18
	0	0.99	4.276	0.08
	40.638	0.00	0	0.68
. 1	29.124	0.00	9.853	0.00
	39.028	0.00	6.197	0.03
1	13.331	0.00	13.331	0.00

 7
 2.
 1
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

c = 380.606.c = 339.968.

· · · ·		Δ	w _i
	, , , , , ,	54.432	0.00
1 	, . . 	51.359 27.489	0.00
· · · · · · · · · · · · · · · · · · ·		43.574 0 ¹	0.12 0.00 0.88
· · · · · · · · · · · · · · · · · · ·		69.415 35.518 54.477	$0.00 \\ 0.00 \\ 0.00$

 $t - : t_{22} = 1.57, P = 0.13) | t - : t_5 = 2.10, | t - : t_5 =$

10% f = 1, 1 = 10% f = 1, 1

. .

 f_{1} f_{2} f_{3} f_{4} f_{3} f_{4} f_{3} f_{3 0.69 . $; n = 1424). f_{1}$ 4.21 1 -1 . . . **. .** . (2002) f. (Troglo-. . . dytes aedon). f.-· · · · · . | , 1 .. f. (. . .f. | . . , f. , | | |. 1 1, 1. 1.

 $f_{1} = \frac{1}{(3(9-13(1)^{-1}(1)-8)-21(1)-1)} + \frac{1}{(2-1)-87(-4(1-2)-9)} + \frac{1}{(2-1$

AVIL, J. M., B. G. OKKE, A. MOK NE, E. KAF, AND A.O., % 4=7. 1(36((3)177(3)-18.8216)6(3)-0.207(3)-16.1(3)-13(3)30) 207M LLE 2007. *Acrocephalus scirpaceus f. Cuculus canorus f.* .002. 469(.646905124855 69 3.404 0-17(60.062 1)20(3-25(3)-17(3)1(3)-13(1-16171(3)-1(3)1(3)-1417(3)(3)-24(3))) 253(3)-24(3) BEAMON E-BALIEN 0, MC 9 0 0 9 151.1956 653.944 [,39 0 C 0.888 0 A EMC, 1-19 3 0 0 9 151 [.-9.951E9 0 C 70C0E1.859 0 11.6932 653