Evidence for quantization of the transition state for cis-trans isomerization

Young S. Choi and Taek-Soo Kim Department of Chemistry, Inha University, Nam-gu, Incheon 402-751, Republic of Korea

Hrvoje Petek^{a)} and Keitaro Yoshihara Institute for Molecular Science, Myodaiji, Okazaki 444, Japan

Paneld Christen

(Received 14 March 1994; accepted 14 April 1994)

Cis-trans isomerization rates of trans, trans-1,3,5,7-octate trans (OT) on the first excited singlet $\frac{1}{14}$, respectively are face have been about the first excited singlet

the morescence mentiones. A stepwise increase in the isomerization rate with increasing energy has

steps tentatively is assigned to an in-plane bending vibration of the transition state.

	Unimolecular reactions are an important type of elemen- tary chemical reaction, in which an energized molecule dis-	frequency doubled with a KDP crystal using an autotrack- ing system. The laser beam crosses the supersonic jet at 15
i. ¥	theoretical studies have been devoted to understanding this	the $\Sigma \in \mathbb{C}(2^{1}A_{+}, 1^{1}A_{+})$ transition state of OT Elements
-	quently employed theory of unimolecular reactions is that formulated by Rice, Ramsperger, Kassel, and Marcus (RRKM). ⁴ The so-called RRKM theory is based upon sev-	quartz lens, filtered with a color filter and an aperture, and then detected with a fast-response photomultiplier tube (PMT) (Hamamatsu H3284) with about a 300 pc risetime
b	tized transition state at the dynamical bottleneck separating the reactant from products and that the rate is given by the flux through vibrational levels of the transition state. Despite the frequent use of this theory experimental avidence for	digital oscilloscope. Each decay curve is averaged for 500 or 1000 decay profiles and stored for further analysis. At a given vibronic energy, measurements were repeated three times on different days to minimize curtement.
	on the triplet surface 5,6 More recently. Wittin and re-	dimensional and the second
, f: 	These recent observations suggest the general existence	thesized by dehydration of 2,4,8-octatrien-6-ol using pyri-
	- order to commune the generalization unantorguousity, nowever,	dure described previously. The alcohol was purchased from
مالاركى م	maning In this Communication with the Content of the	
4	reaction The sis turns is encourage in the second and	
	(S_1) potential energy surface is observed to increase in a stepwise manner with increasing energy as expected for quantized vibrational levels of the transition state.	shown. The decay rate increases very slowly from the origin of the S_1 state up to 2130 cm ⁻¹ . The data of curve (a) between 2070 and 2130 cm ⁻¹ shown in Fig. 1 are on the line of
	on the vibronic energy. The experimental setup in this work	constant up to an energy of 2190 cm ⁻¹ where it increases
Ļ		
	valve with a 0.5 mm nozzle diameter. The output from a pulsed dye laser pumped with a XeCl excimer laser is	edge of the photochemistry and photophysics of the S_1 state of OT. Since the dynamics of electronically excited OT pro-
- .	Cham Phys. 100-(10) 15- hims 1004 00001 000010 (1000(10)	

av Hate (10 ⁶ s. ¹)		- 25 $k_{iso}(E)$)	perimental rate constants were averaged to yield one value at a given vibrational energy and plotted as curve (b) in Fig. 1. The rate constant suddenly increases from 0 to $\sim 1.0 \times 10^7$ s ⁻¹ within a 10 cm ⁻¹ range around 2140 cm ⁻¹ . The rate constant then stays nearly constant until the 2220 cm ⁻¹ re- gion where a second step shows up. The spacing between these two steps is 80 ± 10 cm ⁻¹ . The first step corresponds to
5 – 5 –	(b)	- 5	gives 2137 ± 3 cm for isometrization of O1 on the 3_1 sm face.
0	2120 2170 2220 22 Vibrational energy (cm ⁻¹)	- 0 70	dicted by RRKM theory. According to the theory, the unimo- lecular rate constant $k(E)$ of molecules with vibrational en- ergy E is given by Eq. (1), ¹⁻³
			$k(E) = W^{\ddagger}(E - E_{0})/h_{0}(E) $ (1)
· · · · · · · · · · · · · · · · · · ·			
·			
for the procedur	e of calculation) in the same vibrational energy	range as for	tional states, and <i>n</i> is Planck's constant. Usually $\rho(E)$ is
vides the bas	is for understanding the photochemist	ry of natu-	energies below the threshold. It equals one at the threshold, $\frac{1}{1}$ at the second excited vibrational level, and so on. Thus, $k(E)$
		p	
	iny and mediculearly. Below me	ellagiyenja	Uncase by steps of $Inp(E)$ as energy and indicate $W^{\ddagger}(F - F)$ increases. The stepwise-characteristics are most
and spontane	eous emission. When the molecule is	s prepared	tween vibrational levels in the transition state are the largest.
tion, this phc	otochemical process also contributes to	S_1 decay.	spacings between levels become increasingly smaller and the
state withou	over the barrier supposedly relax to t at emitting fluorescence. Very similar served for <i>trans</i> -stilbene. ¹⁸⁻²⁰ Thus, o	r behavior	increase of $\rho(E)$. Since $W^{*}(E-E_{0})$, which gives a stepwise increase of RRKM rate constant with energy, is based on the <u>implicit accumption that the vibrational levels of transition</u>
as a function	n of energy, since the rate of isomer	ization in-	tization of the transition state. The isomerization rate of OT
channels, int	ternal conversion, and fluorescence. merization rate was approximately		theory; it increases in a stepwise manner with increasing energy.
	nuroutions of other decay channels.		The position of the steps corresponds to vibrational lev-
	cay, internal conversion, and isomerize $t_{\tau_r} + k_{ic}(E) + k_{iso}(E)$. Petek <i>et al.</i> have		first two steps, 80 ± 10 cm ⁻¹ , is the lowest frequency vibra- tion of the transition state. Since OT is a relatively large
<u>م</u>			
data points : linear fu ncti obtained by tive decay a	conreactive decays is a weak function for decay rates below 2000 cm ⁻¹ we on of energy. The isomerization rate [subtracting the calculated contributio and internal conversion, $1/\tau_r + k_{ic}(E)$	ere fit to a k_{iso}(E)] is n of radia- , from the	which are perpendicular to the reaction coordinate of tor- sional motion, should be similar to those of the transition state. Based upon this optimistic expectation, the lowest fre quency vibration of the transition state is tentatively assigned to the in-plane bending motion, ν_{48} , which has a frequency
total experin	nentally observed decay rate, $k_{\text{total}}(E)$.	. Three ex-	of 76 cm ⁻¹ in OT in the S_1 state. ⁸ A lower frequency vibra-

J. Chem. Phys., Vol. 100, No. 12, 15 June 1994

Downloaded 30 Jan 2004 to 137.99.123.42. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

9271	
------	--

.

	tion at $\sim 49 \text{ cm}^{-1}$ is probably the reaction coordinate (tor-	¹ P. J. Robinson and K. A. Holbrook, <i>Unimolecular Reactions</i> (Wiley, London, 1972)
• •		
	agreement with the experimental value of 8.0×10^{-5} s at the same energy, considering the fact that the vibrational frequencies of approximately half of the vibrational modes are used by arbitrarily decreasing the <i>ab initio</i> values ²³ by 10%.	 ³R. G. Gilbert and S. C. Smith, <i>Theory of Unimolecular and Recombina-</i> tion Reactions (Blackwell Scientific, Boston, 1990). ⁴R. A. Marcus and O. K. Rice, J. Phys. Colloid. Chem. 55, 894 (1951); R. A. Marcus, J. Chem. Phys. 20, 359 (1952). ⁵E. R. Lovejoy, S. K. Kim, and C. B. Moore, Science 256, 1541 (1992).
	strated the quantization of the transition state for unimolecu- lar bond-breaking reactions. The present work involves an isomerization in which a bound molecule rearranges into an- other stable geometry. Our results not only provide addi-	 ⁷G. A. Brucker, S. I. Ionov, Y. Chen, and C. Wittig, Chem. Phys. Lett. 194, 301 (1992); S. I. Ionov, G. A. Brucker, C. Jaques, Y. Chen, and C. Wittig, J. Chem. Phys. 99, 3420 (1993).
	tional evidence for quantization of the transition state but also extends the previous work to a different class of unimo-	Christensen, J. Chem. Phys. 98 , 3777 (1993). ⁹ H. Petek, A. J. Bell, K. Yoshihara, and R. L. Christensen, J. Chem. Phys.
	observed in a molecule with 48 degrees of freedom. Other large molecules might reveal similar effects. Extensive col-	 ¹⁰ H. Petek, A. J. Bell, K. Yoshihara, and R. L. Christensen, SPIE Proc. 1638, 345 (1992). ¹¹ T. Toshizawa and H. Kandori, in <i>Progress in Retinal Research</i>, edited by
<u> </u>		140 D. Divers Disables Disables Asto INTE '202 (1000)
	tures of the isomerization of OT and the quantitative	¹² R. R. Birge, Biochim. Biophys. Acta 1016 , 293 (1990).
	tures of the isomerization of OT and the quantitative paper with detailed discussion on the implication of these	
	paper with detailed discussion on the implication of these	(1992). 1. Ommune, J. Chem. Phys. 65, 2546 (1965). ¹⁸ J. A. Syage, P. M. Felker, and A. H. Zewail, J. Chem. Phys. 81, 4706 (1984).
	paper with detailed discussion on the implication of these University gratefully acknowledge the support from the Inha University Research Fund and the Ministry of Education of	(1992). ¹⁸ J. A. Syage, P. M. Felker, and A. H. Zewail, J. Chem. Phys. 81 , 4706 (1984). ¹⁹ P. M. Felker and A. H. Zewail, J. Phys. Chem. 89 , 5402 (1985). ²¹ In the calculation, the degeneracy of the transition state is assumed to be

.