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 In my research, I explored other scenarios in which AI agents may learn to misbehave or commit 
 financial crimes. In particular, I focused on what misbehavior may arise with the use of AI in brokerage 
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 frontrunning or frontrunning-like behavior. 
 Professor Byrd built a discrete event simulation program called ABIDES (Agent-Based 

 Interactive Discrete Event Simulation) that has the capability of simulating a financial market, and I built 
 upon his simulation in order to conduct my experiments. I created several types of agents having to do 
 with brokerage firms, including “Broker agents” which handled orders, broker client agents which traded 
 through Broker agents rather than directly with an exchange, and broker trading agents which traded on 
 behalf of a brokerage firm. We assumed that due to order internalization (瀀inforcement learning built with the 

 TensorFlow and Keras Python libraries. The experiments I conducted had two versions of the AI agent: 
 one with access to the internalized order list and one without. The first experiment included broker clients 
 which placed orders entirely at random, as we believed that such orders would be representative of retail 
 traders that make up a broker’s clientele. The results of this experiment did not lead us to believe that the 
 AI agent was committing frontrunning-like behavior as the trained agent would most often yield negative 
 results, losing significantly on average, and this is most likely due to the randomness of the client trades. 
 With a trading agent that had largely negative results, we deemed it unlikely that the agent was exhibiting 
 exploitative behavior, and revised our approach to attempt to more accurately represent a brokerage firm’s 
 clientele. 

 The second experiment had broker clients that traded based on a spread of values for a believed 
 “fundamental value” of what a stock’s price should be worth, which we believed would be closer to retail 
 trader behavior. In this experiment, the AI trading agent yielded much more positive results, however the 
 general trends of the results of the agent with access to the internalized order list and the results of the 
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 order information. As brokerage firms incorporate AI into their trading strategies, these cases must be 
 monitored and examined. Regulations for how an AI trader prepares orders may need to be implemented 
 as this behavior may be a sign of exploitation by AI which might otherwise go undetected. 
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